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Interfacial velocity corrections due to multiplicative noise
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The problem of velocity selection for reaction fronts has been intensively investigated, leading to the
successful marginal stabilitMS) approach for propagation into an unstable state. Because the front velocity
is controlled by the leading edge which perforce has low density, it is interesting to study the role that finite
particle number fluctuations have on this picture. Here, we use the well-known mapping of discrete Markov
processes to stochastic differential equations and focus on the front velocity in the simples A system.

Our results are consistent with a recéimeuristio proposal thaw ys— v~ 1/In?N. [S1063-651X99)02104-3

PACS numbdis): 02.50~r, 47.54:+r

[. INTRODUCTION one which explains the recently discovered fdd] that one
can have diffusive instabilities of a front in a chemical reac-
There has been a great deal of interest in the problem dfon system which do not show up in a reaction-diffusion
reaction front propagation in nonequilibrium systems. Thistreatment thereof.
issue arises in systems ranging from flarfigsto bacterial Our purpose here is to introduce a different approach for
colonies[2], from solidification pattern§3] to geneticg4]. studying the role of these fluctuations in modifying the front
Most of the theoretical work in this area involves solving Velocity. There is a well-established machinery which trans-
deterministic reaction-diffusion equations. Here, we focus orforms the master equation for Markov processes for chemical
effects that occur when one goes beyond this mean-fielfeaction systems to an associated stochastic differential equa-
treatment and considers the effects of fluctuations. tion. This was first proposed by D¢L4], and clarified in
By now, it is clear that there are several possib|e mechasome seminal work of Pell[ﬂ5] This framework has in fact
nisms whereby the velocity of a deterministic reaction-been used for the study of critical phenomena associated
diffusion front can be selected. For cases where we propavith bulk transitions in reaction dynami¢46], but has not
gate into a linearly unstable state, the marginal stabilityoeen applied to the issue of front propagation far from such
criterion [5] suggests that the fastest stable front is the on@& bulk transition. Here, we directly simulate the relevant sto-
that is observed for all physical initial conditions. For propa-chastic equation; this requires the analytic solution of a
gation into a metastable state, there is a unique front solutiofingle-site problentinteresting in its own right which then,
consistent with the boundary conditions and hence there i¥ia a split-step method, allows us to time-step the entire spa-
no selection to be done. In between, there is the case of tially extended system. Our results to date verify the Brunet-
nonlinearly unstable state in which the exponentially local-Derrida scaling and in fact are even consistent with the co-
ized front is chosen. These principles have been verified igfficient obtained by the cutoff approach.
many examples and in some cases can be rigorously derived The outline of this work is as follows. In Sec. Il, we
[6]. review the mapping from the master equation to a Langevin
However, it is understood that deterministic equations ar€quation with multiplicative noise. Next, we solve a variety
often only approximations to the actual nonequilibrium dy-Of single-site problems as a prelude to introducing our simu-
namics. This is particularly clear in the case of chemicallation method. We then tackle the front problem numerically
reaction systems where the true dynamics is a continuoudnd compare our findings to the results obtained by augment-
time Markov process which gives rise to a reaction-diffusioning the deterministic system with a cutoff. In order to accom-
equation only in the limit of an infinite number of particles Plish this, the findings of Brunet and Derrida are extended to
per Site[?]_ More genera”y' having a finite number of par- include the effects of finite resolution in space and time. At
ticles gives rise to fluctuations that may be important in thethe end, we summarize the open issues that we hope to ad-
front propagation problem. It has been hypothesized in &lress in the future.
variety of systemg8-10] that the leading effect of such
fluctuations is to provide an effective cutoff on the reaction
rate at very chemical concentrations. If this is the case, cal-
culations by Brunet and Derridd 1] predict that in the case In this paper, we will study the following space-lattice
of a system whicHin the deterministic limit exhibits (lin- reaction scheme:
ean marginal stability (MS) selection, the front velocity
obeys the scaling ys—v~1/In°N, whereN is the (mean-
field) number of particles per site in the stable state. Direct

Il. DERIVATION OF THE STOCHASTIC EQUATION

a

simulations of the underlying Markov processes have, in two A—2A, @
cases to dat¢11,12, been consistent with this predicted

form, albeit with some uncertainty regarding the coefficient. B

Also, we note in passing that the cutoff idea is the simplest 2A—A, 2
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fairly standard, but we find it useful to include this derivation

N
A—D0, 3 here both for completeness and for fixing various parameters
in the final Langevin system.
B Following Doi[14], we introduce a vector in Fock space
0—A, (4 |{n;}) and raising and lowering operatogs ,a; with the
properties
o
Ai—Ae, ) .
_ . _ _ al....n, . =nlooon—1, 000,
wheree is a nearest-neighbor site of sitea, 8, \, u, 7 are
rates of the corresponding reactions, i.e., probabilities of )
transition per unit time. This process is described by the ..., oo=lomt ), (12
master equation . .
and the commutation relation
dP({n,},t): 0P({n|},t) +(9P({n|},t)‘ o
dt : | a [a.a] =6} . (13
JP({ni};t) &P({ni};t)‘ &P({ni};t)‘ We choose an initial condition for the master equatiénto
T | + . Tt | be a Poisson state,
A T N
(6) n;

which states that the probabili®({n;};t) of havingn; par-

ticles on sited at some timet changes via each of the el-

ementary processes.
(i) One particle splitting into two,

ot =a[(ni—1)P(...,ni—l,...,‘t)

-nP(....ni,...;H]. (7)
(ii) Two-particle reaction with one being annihilated,

IP({ni}t)

o =BL(Ni+1)MP( ... n+1,... )

B
_ni(ni_l)P(...,ni,...;t)]. (8)

(iii) One-particle annihilation,

dP({ni};t)

ot :)\[(ni‘f'l)P(...,ni+1,...;t)

N

—niP(...,ni,...;t)]. (9)

(iv) Particle birth from vacuum,

W T= P(....ni—=1,...1)
—P(....n,...;H]. (10
(v) Diffusion,
IP{ni};t)

—u S [(Ne+)P( ... n—1ng+1,...1)

ot u e

-nP(....n;,...;0)]. (11

In this section, we provide a brief but self-contained deriva-

P({n;};t=0)=e MOT] Noi

I (14)

where N5(0)=2;nq; is the expected total number of par-
ticles. If we define the time-dependent vector

|¢<t>>={§_} P{n:0l{n}), (15)

the master equation can be written in the Sdimger form,

d .
SileW)=-Rle), (16)

whereH=3H; and the latter is given by

—n2 & (ac—a)+all-a'la’a - pl1-aJa’a]
—M1-ala+1-a]. 17)
The formal solution of this equation is
(D) =e | p(0))=e MO e 4'mai0). (19

To be able to calculate average values for observables, we
need to introduce the projection state

(I=(olII e (19

The external product of this with any sta;}) gives 1.
Then any normal-ordered polynomial operator satisfies

(Qa’h{ah=(Q({1}.{a}). (20)

tion of a stochastic equation whose solution is directly re-
lated to the solution of this master equation. This is by nowUsing this equation we get for any observable
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1 wherez; is the complex eigenvalue @t . In the case of real
<A(t)>_{% AnHP(nikD =(Adabl¢1), (21 positive {z} these states are Poissonian stdte8] with
(nj)=z;. By inserting the completeness relation,

whereA({a;}) is what we obtain by using the commutation
relation to normal ordeA and thereafter setting,” to 1. )

In order to write a path integral representation for the time 1= ( H f %e—|zi‘2+zi+zi* ) I2)(z| (23)
evolution operator, we follow Pelifil5] and introduce a set i iy '
of coherent statetsee[17] for more rigorous treatment

||{zi}):e2i Zié‘i+*zi|0>, (220 whered?z;=d(Re z)d(Im z), into expressior{21) we get

(IAdape " ¢0)=(A{a}(1-HAY|Z)
2(N)

~ A d R
=<|A({ai})(HJ’ 727' o 13V 2ezN 47 (N))||Z(N)><2(N)||

N 25())
R d<zV\ .
X j]Jl (1—Hm))||z<°>>:<o (,Hl 11 fT')A({zgm})eS o>, (24)
whereAt=t/N, |$(0))=[]z(?), and
$=2 X [Hi(z*", 20 )at+|z)P-zr Wz 7D — 2N+ 2] (25)
=17
N-1 F+D+D _ ) . _
=J§0 2 At( : ('At : )+Hi(z(”1)+1,z“))). (26)

Here z* W=z +1 andH;({z*1 "1} {z1)}) is the same function o£*0*V  z#0) asH,({a'}, {a;}) of &', a;. In the
continuous time limit we get

H Dz, Dz, A({zZi(to) e~ Sl{z(OL{z(O}ito]
I

(A(to)) = — 27
JH DZDzie‘S[{Zi(U},{Zi(t)};to]
with
_ o - [d -
Sz} {zO}]=2 fo dt(zima—w z()— a[1+7(D)]1z(1)z(t)
+BL1+z()]z(DZ(D) +AzZ()Z (D) — 72 (1) |, 28

whereV? is the lattice Laplaciarv?z;(t) == z.(t) —z(t)]. Next, we follow Shapif19] and linearize the action using the
Stratonovich transformation

eZazi—pZh)dt _ f Ao~ (U277~ 2\ 2(az— 2 mi (29)

and integrate out the variables

to to
(Alto))~ J 11 Dy Dze 22 f ‘“”iz“)A({zi(to)})tljo 8{dz(t)— uV2z()dt

—azi(t)dt+ BZ2(t)dt+ Nz (t)dt— rdt— 2[ az;(t) — BZ2(t)] 7i(t) Vdt}. (30)
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In this expression, there a® functions at every time; this term. Let us start with the simplest example,
means that only;(t), which satisfy the Langevin equation

du=\2udw. (33
dz(t)= uV2z(t)dt+ (a—\)z(t)dt— BZ2(t)dt+ rdt

The probability density P(u,t) satisfies the associated

+2[az(t) - BZ (1) JdWi(t) (3 Fokker-Planck equation

[where W;(t) is a Wiener procegs contribute to the path
integral. In other words, the variableg(t) remain on the aP(ut) 2
trajectories described by E@31). Note that this equation Fra —uP(u,t) (34
must be considered as an Ito stochastic differential equation, Jdu
since we can see from the form of the acti@®) that up- o .
dating the variables, to time-stepj + 1 only requires knowl-  With initial condition P(u,t) |, = 8(u—uo). We want our
edge of the variables at time-stgpAlso, we note that for solution to be equal to zero far<0 and have no flux leak-
A=0 and for small enougkpositive 7, if the initial condi-  ing out of this point; this will guarantee that the total prob-
tions specify G<z;(0)<a/pB, this will remain true for all ability remains a constant, which we will choose to be unity.
subsequent time. Thus, E(1) describes the temporal evo- ~ To solve this equation, we defing=uP and Laplace
lution of the system as a sequence of Poissonian sth8és transform in time to obtain

For further analysis, we rescale E®1) with z=ua/pB,
t—t/a, \=Na, 7=7B/a? and p=pula. If we further- Pt ~
more letN=a/B be the mean-field number of particles in u—z(s)—sw(s)=uo5(u—u0). (35
the presence of only the first two procesges spontaneous ou
decay or spontaneous creatipwe obtain

Here, J(s) is the transform ofy. If we lety=24/u, this can

duy=RV2udt+ (1-X) uydt—u?dt+7dt be written as

2 2
+\/:Vui_uidvvi (32) a__li_s "‘:_&5 — 36
N e Yy W (Y= Yo)- (36)
with initial conditions G<u;(0)=<1.
The homogeneous part of this equation can be recognized as

Il EXACT SOLUTIONS OF SOME LOCAL LANGEVIN a variant of Bessel's equation. This allows us to write down
EQUATIONS a provisional solution in the form

In the absence of proce&$), i.e., atr=0, Eq.(32) has an
absorbing statei=0. In the vicinity of this 'p.oint,' Eq(32) W(s)= MKl( \/EY>)|1(\/EY<), (37)
cannot be treated by merely settidg to a finite time step. 2
Such a scheme would often give rise to a negativdue to
the (very-large noise term. Onad hocway to circumvent Wherel; andK; are modified Bessel functions ayd (y-)
this difficulty was given by Dickmafi20], who proposed to is the larger(smallej of y andy,. Returning to the original
reintroduce discreteness into the state space in the vicinity ofariables,
the absorbing state. Although this approach appears to work
(it seems to lead to the correct critical behavior near the bulk \/u—
transition of this class of modgldt seems to be a step back- |3(s)=2—0 Ki(2ysu)1,(2/su.). (39
ward; after all, the original process was discrete and the Ju
whole purpose of using the Langevin formalism is to provide
a (hopefully more analytically tractableontinuum descrip-  This solution does not, of course, vanish o0 and hence
tion. But, one must then come up with a different scheme fowve must modify it by multiplying byé(u). This does not
updating the stochastic variables. change the fact that it solves the equation away froaD

Our approach is to solve exactly the stochastic part of théut it does introduce a discontinuity of size
evolution equation and embed this via the split-step metho@uoK 1(2+/su,). If we look at the original equation, we see
in a complete updated scheme for a finite time si¢pWe  that this leads to & function via ué’(u)=—&(u). This
will discuss the details of this scheme in the next sectionmust be compensated for by adding an expl&itunction
Here, we provide an analytic solution for sevetcal) piece to the solution. The final result is
Langevin equations, as these results will be needed later.
Also, this solution set is of interest on its own. There is some

limited consideration of equations of this sort in the literature 5(s)=2@K1(2 [su)l,(2+/su-)
[21], but as far as we can determine, these explicit solutions Ju
for the case of physical no-flux boundary conditions at the
absorbing state have not previously appeared. \/E —
So, we consider Langevin equations with just the noise +2 s K1(2VS ) 5(U). (39)
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P(u,t)

(=]

FIG. 1. The function(40) with u,=1 and At=0.03(n?>—n FIG. 2. The function(42) with u,=1 and At=0.03(n?>—n
+1) forn=1,...,10. +1) forn=1,...,10.

We can do the inverse transform by the usual contoufor this case, spontaneous birth from the vacuum prevents

integral approach. The details are particularly unilluminat-the system from falling irreversibly to the state=0. In-
ing, so we merely quote the final result stead, there is an integrable power-law singularity near

=0 which becomes & function in ther—0 limit; this is
1 Ju 2+\/uu
P(U,t): T\/ée_(l.l'f'UO)/tll( n 0

shown in Fig. 2.
+eo/ty(u). For the system
(40)

One can check explicitly that this solves the equation and . o

also thatP remains normalized for all times. Thifunction e Probability density is

piece represents accumulation at the absorbing statejeds I

large, all the probability ends up there. The regular part of P(u,t)=e~®0®"/(€"~1) 5(y)

P(u,t) is presented in Fig. 1. We see that as ratjgt be-

comes smaller, the distribution gradually shifts towards zero / Yo T e a(utugedt)/ (et —1)

and differs from the Gaussian expected at very short times. Ve u 11@Vg(Hutpe '
For completeness, we write down the solution of the

du=audt+2udw (43)

Langevin equations with additional terms. If we take the sys- (44)
tem whereg(t) = a?e®/(e**—1)2. In this case, the drift toward
infinity gives rise to a finite total probabilitffor long times
du= rdt+2udW, (41)  offalling into the absorbing state. One can also work out the
case of both finiter and finite .
the probability density is For the system
Juug du=+2(u—u?dw (45)
Uo “”’ZI”(Z t ) deri i ion for the probability d
P(ut)= (U) e Ut (42) \gg/can erive a series representation for the probability den-

+ o
2m+1 Juo(1—ug)
:z: —m(m-+1)t Pl _ 1 _
P(u.b) “ € 2m(m+1) ¥V u(l-u) m(2Uo—1)Pr(2u—1)

+

+5(u)( 1—Uo—mE:l (_1)mm

VUug(1—ug)e Mm+Itpl oy — 1))

+ oo

2m+1
Up+ X

—olmw Ut 2 5T

Jug(1—ug)e mm+Ltpl (o — 1)) , (46)
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whereP?(x) is an associated Legendre polynomial. Succeserete lattice and a finite time update scheme, so as to be able
sive terms in this sum decay rapidly because of the exponentQ directly compare our simulation data with the theoretical
and thus the sum can be computed numerically to high agxpectation.
curacy. Note that there are absorbing states at bet@ and After linearization, the deterministic part of the dis-
u=1. If the initial state starts close to one of these, the probcretized equation takes the form
ability distribution is almost the same as E@Q); if the . .
initial state is in between, then for short times the system is uf P —uf) i) Q) 1) N
almost Gaussian. , At =p(ud—2u+uly+ul. (49

We want to compare this equation to the usual Fisher equa-
IV. FRONT PROPAGATION tion with diffusion coefficient D. This means thatu
=D/h?; we will consider the casB = 1. We assume that the
front moves with constant velocity and therefore the vari-
ablesui(” show a stroboscopic picture of this motion at times
jAt on the lattice sites. If we move with the speed of the
front, we will see that its shape exponentially decays as
edih=ciAt — gypstitution of this expression into E@49)
gives the dependence ofon the decay rate,

A. Numerical method

We are interested in numerically solving E§1), for the
particular case of=\=0; this is the case which reduces in
the deterministic case to the well-studied Fisher equatan
For this purpose, we define a function

u
Fu m(U)zf P(u,At)du, (47)
o o e—cht_l

At =ﬁ(coshqh—l)+1. (50
where P(u,At) is the analytical solution of a single-site

Langevin equation such as E§2). This function has values The standard marginal stability argument predicts that we
ranging from 0 to 1. Ify is a randE)lm variable homoge- can determine the decay rate and asymptotic speed of the
neously distributed of0,1], thenu=F, * \/(y) is distributed  ront (for a sufficiently localized initial stajeby solving Eq.
according to a corresponding truncated Langevin equation &50) as well as its derivative with respect ¢p

time At. The remaining parts of the complete Langevin
equation are deterministic and for those terms we can update
u via a simple Euler scheme. We then can combine these two
steps together; we first compute the changa d@ue to fluc-
tuations and then the change ofdue to the deterministic Simulations directly confirm this formula as well as the Bru-
part (using a new value ofi). Thus net and Derrid@11] result(actually derived earlier by Bram-
son[23)) thatc,,—c(t)~ 1/t (see Fig. 3.

As already mentioned, it has been conjectured that the
leading effect of the fluctuations is the imposition of an ef-
fective cutoff of order IN in the deterministic equation. To
whereD{u} denotes the terms remaining after consideratiorcheck this, we need to extend the Brunet and Derrida result
of the noise term. to our discretized equation. The basic idea is that there must

It is important to note that this scheme never allows theébe a small imaginary part of the decay rate so as to satisfy
field to go below zero, but it does allow a variable to bethe continuity conditions at the cutoff point; this is discussed
stuck at zero until it is “lifted” by the diffusive interaction. in detail in[11]. This leads directly to
This is an absolutely necessary aspect of simulating pro-
cesses with an absorbing state. Approximations which do not Img= 0o
allow for getting “stuck,” such as the system-size expansion In(AN)’
method of Van Kampei7] (where the noise correlation is
taken to be related to the solution of the deterministic limit ofwheredy is a solution from the marginal stability criterion
the equatiojy get this wrong and hence cannot get the cor-andA is some constant. Sineg(q) is zero at the marginal
rect front velocity. This explains why the simulation results stability point, we can find the change in velocise by
of [22] do not exhibit the anomalous dependence expected considering the second derivative of the functiga) given
via the Brunet-Derrida cutoff argument. As we will see, ourby Eq. (50). We thus get
approach is much more successful.

ce’qcmz—zsinh h (51)
ponnan.

U(t+AD =Fy ) T DIF g adVIAL (48)

(52

2
CoAt

m2qq eCOqOA‘costhh—OT

B. Marginal stability criterion for a discretized Fisher Sc= _ (53)

equation IN°N

As N gets large, our results should approach those of thi T - . ; ;
2 - : ain, simulations confirm this formul@ee Fig. 4.
deterministic system. Since this problem corresponds to g e g- 4

propagation into an unstable region, the velocity should be
given by the marginal stability approach. As is well known,

this predicts a velocity equal to\D, in the continuum(in We now present the results of our simulation. We chose
time and spacelimit. Here, we extend this result to a dis- to make one further simplification. We use the pure square

C. Results
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: 0
1'58_;' _' : 1 —0.05F s .........
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In? N

FIG. 3. Front propagation for the discretized Fisher equation. FIG. 5. Front speed for the Langevin equation with parameters
Parameters werdt=0.01, h=1; for this choice, Eq(49) gives At=0.01 andh=1.
¢, =2.054115884. The speed is determined by registering every
time some lattice poinF comes V\_/ithin some small interval around To actually evaluate the probability tabfe, (u), we
0.5 and then merely using the ratio of the number per spaces move . e . 0
over the time elapsed; this method leads to some scatter, as seen(‘gijnose 512 equldlstant vfalues @f in the interval from 0 to
the graph. Aside from showing agreement with the calculated ~ 50- FOr eachip, the interval of values forli where
the graph also shows how the system approaches the everttual $7o,.at—0.01(0) is nontrivial was divided into 1024 equidis-
asymptotic behavior. tant points. The new value di was then determined by

.linear interpolation of the data from the table. Rgy> 30,

root noise term instead of the precisely correct term given ""hew values ofi were determined using a standard algorithm
Eq.(32). We do this for computational ease, inasmuch as th r the Gaussian distribution, since this distribution is the

expression derived for this case is much simpler than that o ST oS s .
Eq. (46). Since it is only the effect of the noise near the asymptotic limit of Eq.(40), whenl>At, 0> At. The dif-

=0 absorbing state which is crucial for altering the Se|ecte(ierence for this distribution and exact solution is small for
velocity, this simplification should not be essential. Once welo>30. Finally, the computation of the stochastic term was
have done this, the resulting equation has the nice featurgirned off forlp>10""N. This should not affect the speed
that the coefficient 3N in front of the noise term can be Which, we have already argued, is only sensitive to what
removed by the rescaling=uN. This means that we can happens nean=0; this insensitivity was also checked di-

simulate Eq.(32) using a fixed probability tabléwith the rectly by running some simulations in which the stochastic
same time stepfor any N. term is included for all values af.

All of our simulations were run up to time=10°. Four
values of the velocity, corresponding to time intervals of
approximately 2 10°, were obtained so as to get an average
and an error bar. In Fig. 5 we show data in the formcof
—c.,, wherec,, is calculated from Eq51), versus IAN. Also
plotted for comparison is the function 119 Note that
over many orders of magnitude Nf the dependence derived
by Brunet and Derrida provides a very good fit to the data.

To get a more accurate indication of the data for laxge
we present in Fig6 a series of three runs, for differing val-
ues of the spatial lattice spacihgUnder the hypothesis that
the stochastic system should be precisely the same as the
deterministic system with the cutoff added, the expected lim-
iting values at infiniteN are shown as triangles on the axis. It
is clearly impossible to definitively conclude that the curves
» ; ; ; ; ; , ; are approaching these values. On the other hand, simple ex-
0 0005 001 0015 002 0025 003 0035 004 trapolations come very close and we believe that it is more

I N likely than not that this hypothesis is true. This is opposite to

FIG. 4. Dependence of the front speed on the deterministic cutWhat was conjectured based on simulations of a discrete
off. The curves represent simulation results calculated with the palarkov process, where the velocity seems to scale, albeit
rametersh=1 and At=0.01;0.015;0.02 from top to bottom, re- With a different coefficient. Given the incredibly slow con-
spectively. The cutoff was implemented via setting the field to zerovergence of this velocity at large, we are pessimistic as to
at any time and place where it was below1/The triangles on the Whether any purely simulational strategy would provide a
y axis represent the theoretical values winer- o as given by Eq.  definitive answer to this question. This therefore offers a
(53. crucial issue for future theoretical analysis to investigate.

20 ! ! T ! T ' !
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13 T ' ' g g g T a front(corresponding to the invasion of the unstable state by
T ‘ ' ' 5 ‘ : ‘ the stable onewill propagate. One attractive hypothesis is
1ok e i that the leading effect of the fluctuations is to introduce an
; effective cutoff into the deterministic equation; this idea
11_..,.I ..... SN S e R e T i arose independently in a model of biological evolutia)
wt I; R and in mean-field approaches for diffusion-limited aggrega-
z T;; Z Z ‘ tion (DLA) [8]. Brunet and Derrida have shown that if this is
£ ol ‘ _”_,Iﬂ - ] the case, one should expect,;s—v=C/In?N, where C
T, I‘ TS S ‘ =7 for the case of continuous time and space. We have
a1 . LEL ] extended the calculation @ to the finite lattice size, finite
1 ;HII . fI time-step system and compared this prediction with direct
7h L I.u{..I ........ Fooieeeeens ............ ............ ............ S 4 simulations of the relevant stochastic equation_ Our results
S verify the form of the scaling and suggest that the coefficient
BE I ; ............ _ ...... ,,,,,,,,,,,, s 4 may be correct as well.
‘ : : ‘ One issue that is left unaddressed by our work to date

o o002 004 006 008 04 o012  o4a  ois concerns the effects of higher spatial dimensionality. It is
In"'N likely, although unproven, that the velocity change will be
smaller, as the fluctuations get averaged over the transverse
Yirections. This seems to be the explanation for the findings
of Riordan et al. [24] that the reaction front looks mean-
field-like even for smalN, in three and four dimensions. We
hope to report on this issue in the future.
Finally, we point out yet again that there is no analytic
V. SUMMARY treatment available for the velocity selection problem in the
In this work, we have shown how to use the field- stochastic equation. Obvious expansion methods such as the

theoretic mapping of discrete Markov processes to Stochasth%yzlsterln—S|fzehapfp|)roach_cannot WOT:’ ﬁs they negtl)ectkthe esrs]en-
equations for a continuous density variable to address th@! role of the fluctuations to push the system back into the

role of finite-particle number fluctuations on the velocity of @0S0rbing state at small density. We need to find a more

reaction fronts. Specifically, we studied a model which |eadsoowerful approach.

to _the well-known Fisher equation. in tie— oo !imi_t, where ACKNOWLEDGMENTS

N is the average number of particles per site in the stable
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bility criterion becomes modified by these stochastic effectsalso acknowledge the support of the NSF under Grant No.
It is clear that having finité\ lowers the velocity at which DMR98-5735.

FIG. 6. Front speed for the Langevin equation with parameter
At=0.01 andh=1, h=1/2, h=1/3 correspondingly from top to
bottom. Triangles on thg axis are the corresponding asymptotic
values for the deterministic cutoff.
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