
PHYSICAL REVIEW E APRIL 1999VOLUME 59, NUMBER 4
Interfacial velocity corrections due to multiplicative noise
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Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

~Received 30 October 1998!

The problem of velocity selection for reaction fronts has been intensively investigated, leading to the
successful marginal stability~MS! approach for propagation into an unstable state. Because the front velocity
is controlled by the leading edge which perforce has low density, it is interesting to study the role that finite
particle number fluctuations have on this picture. Here, we use the well-known mapping of discrete Markov
processes to stochastic differential equations and focus on the front velocity in the simpleA1A�A system.
Our results are consistent with a recent~heuristic! proposal thatvMS2v;1/ln2 N. @S1063-651X~99!02104-2#

PACS number~s!: 02.50.2r, 47.54.1r
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I. INTRODUCTION

There has been a great deal of interest in the problem
reaction front propagation in nonequilibrium systems. T
issue arises in systems ranging from flames@1# to bacterial
colonies@2#, from solidification patterns@3# to genetics@4#.
Most of the theoretical work in this area involves solvin
deterministic reaction-diffusion equations. Here, we focus
effects that occur when one goes beyond this mean-fi
treatment and considers the effects of fluctuations.

By now, it is clear that there are several possible mec
nisms whereby the velocity of a deterministic reactio
diffusion front can be selected. For cases where we pro
gate into a linearly unstable state, the marginal stabi
criterion @5# suggests that the fastest stable front is the
that is observed for all physical initial conditions. For prop
gation into a metastable state, there is a unique front solu
consistent with the boundary conditions and hence ther
no selection to be done. In between, there is the case
nonlinearly unstable state in which the exponentially loc
ized front is chosen. These principles have been verifie
many examples and in some cases can be rigorously de
@6#.

However, it is understood that deterministic equations
often only approximations to the actual nonequilibrium d
namics. This is particularly clear in the case of chemi
reaction systems where the true dynamics is a continu
time Markov process which gives rise to a reaction-diffus
equation only in the limit of an infinite number of particle
per site@7#. More generally, having a finite number of pa
ticles gives rise to fluctuations that may be important in
front propagation problem. It has been hypothesized i
variety of systems@8–10# that the leading effect of suc
fluctuations is to provide an effective cutoff on the reacti
rate at very chemical concentrations. If this is the case,
culations by Brunet and Derrida@11# predict that in the case
of a system which~in the deterministic limit! exhibits ~lin-
ear! marginal stability ~MS! selection, the front velocity
obeys the scalingvMS2v;1/ln2N, whereN is the ~mean-
field! number of particles per site in the stable state. Dir
simulations of the underlying Markov processes have, in t
cases to date@11,12#, been consistent with this predicte
form, albeit with some uncertainty regarding the coefficie
Also, we note in passing that the cutoff idea is the simpl
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one which explains the recently discovered fact@13# that one
can have diffusive instabilities of a front in a chemical rea
tion system which do not show up in a reaction-diffusi
treatment thereof.

Our purpose here is to introduce a different approach
studying the role of these fluctuations in modifying the fro
velocity. There is a well-established machinery which tra
forms the master equation for Markov processes for chem
reaction systems to an associated stochastic differential e
tion. This was first proposed by Doi@14#, and clarified in
some seminal work of Peliti@15#. This framework has in fact
been used for the study of critical phenomena associa
with bulk transitions in reaction dynamics@16#, but has not
been applied to the issue of front propagation far from su
a bulk transition. Here, we directly simulate the relevant s
chastic equation; this requires the analytic solution o
single-site problem~interesting in its own right!, which then,
via a split-step method, allows us to time-step the entire s
tially extended system. Our results to date verify the Brun
Derrida scaling and in fact are even consistent with the
efficient obtained by the cutoff approach.

The outline of this work is as follows. In Sec. II, w
review the mapping from the master equation to a Lange
equation with multiplicative noise. Next, we solve a varie
of single-site problems as a prelude to introducing our sim
lation method. We then tackle the front problem numerica
and compare our findings to the results obtained by augm
ing the deterministic system with a cutoff. In order to acco
plish this, the findings of Brunet and Derrida are extended
include the effects of finite resolution in space and time.
the end, we summarize the open issues that we hope to
dress in the future.

II. DERIVATION OF THE STOCHASTIC EQUATION

In this paper, we will study the following space-lattic
reaction scheme:

A→
a

2A, ~1!

2A→
b

A, ~2!
3893 ©1999 The American Physical Society
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A→
l

0, ~3!

0→
t

A, ~4!

Ai→
m

Ae , ~5!

wheree is a nearest-neighbor site of sitei ; a, b, l, m, t are
rates of the corresponding reactions, i.e., probabilities
transition per unit time. This process is described by
master equation

dP~$ni%;t !

dt
5(

i
F ]P~$ni%;t !

]t U
a

1
]P~$ni%;t !

]t U
b

1
]P~$ni%;t !

]t U
l

1
]P~$ni%;t !

]t U
t

1
]P~$ni%;t !

]t U
m
G

~6!

which states that the probabilityP($ni%;t) of havingni par-
ticles on sitesi at some timet changes via each of the e
ementary processes.

~i! One particle splitting into two,

]P~$ni%;t !

]t U
a

5a@~ni21!P~ . . . ,ni21, . . . ;t !

2ni P~ . . . ,ni , . . . ;t !#. ~7!

~ii ! Two-particle reaction with one being annihilated,

]P~$ni%;t !

]t U
b

5b@~ni11!ni P~ . . . ,ni11, . . . ;t !

2ni~ni21!P~ . . . ,ni , . . . ;t !#. ~8!

~iii ! One-particle annihilation,

]P~$ni%;t !

]t U
l

5l@~ni11!P~ . . . ,ni11, . . . ;t !

2ni P~ . . . ,ni , . . . ;t !#. ~9!

~iv! Particle birth from vacuum,

]P~$ni%;t !

]t U
t

5t@P~ . . . ,ni21, . . . ;t !

2P~ . . . ,ni , . . . ;t !#. ~10!

~v! Diffusion,

]P~$ni%;t !

]t U
m

5m(
e

@~ne11!P~ . . . ,ni21,ne11, . . . ;t !

2ni P~ . . . ,ni , . . . ;t !#. ~11!

In this section, we provide a brief but self-contained deriv
tion of a stochastic equation whose solution is directly
lated to the solution of this master equation. This is by n
f
e

-
-

fairly standard, but we find it useful to include this derivatio
here both for completeness and for fixing various parame
in the final Langevin system.

Following Doi @14#, we introduce a vector in Fock spac
u$ni%& and raising and lowering operatorsâi

1 ,âi with the
properties

âi u . . . ,ni , . . . &5ni u . . . ,ni21, . . .&,

âi
1u . . . ,ni , . . . &5u . . . ,ni11, . . .&, ~12!

and the commutation relation

@ âi ,â j
1#5d i j . ~13!

We choose an initial condition for the master equation~6! to
be a Poisson state,

P~$ni%;t50!5e2NA~0!)
i

n0i
ni

ni !
, ~14!

where NA(0)5( in0i is the expected total number of pa
ticles. If we define the time-dependent vector

uf~ t !&5(
$ni %

P~$ni%;t !u$ni%&, ~15!

the master equation can be written in the Schro¨dinger form,

]

]t
uf~ t !&52Ĥuf~ t !&, ~16!

whereĤ5( i Ĥ i and the latter is given by

2m(
e

âi
1~ âe2âi !1a@12âi

1#âi
1ai2b@12âi

1#âi
1âi

2

2l@12âi
1#âi1t@12âi

1#. ~17!

The formal solution of this equation is

uf~ t !&5e2Ĥtuf~0!&5e2NA~0!e2Ĥte(
i

âi
1n0iu0&. ~18!

To be able to calculate average values for observables
need to introduce the projection state

^u5^0u)
i

eâi. ~19!

The external product of this with any stateu$ni%& gives 1.
Then any normal-ordered polynomial operator satisfies

^uQ~$âi
1%,$âi%!5^uQ~$1%,$âi%!. ~20!

Using this equation we get for any observable
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^A~ t !&5(
$ni %

A~$ni%!P~$ni%;t !5^uÃ~$âi%!uf~ t !&, ~21!

whereÃ($âi%) is what we obtain by using the commutatio
relation to normal orderA and thereafter settingâi

1 to 1.
In order to write a path integral representation for the ti

evolution operator, we follow Peliti@15# and introduce a se
of coherent states~see@17# for more rigorous treatment!,

i$zi%&5e(
i

zi âi
1

2ziu0&, ~22!
e

wherezi is the complex eigenvalue ofâi . In the case of real
positive $zi% these states are Poissonian states@18# with
^ni&5zi . By inserting the completeness relation,

15S )
i
E d2zi

p
e2uzi u

21zi1zi* D iz&^zi , ~23!

whered2zi5d(Re zi)d(Im zi), into expression~21! we get
e

^uÃ~$âi%!e2Ĥtuf~0!&5^uÃ~$âi%!~12ĤDt !Niz~0!&

5^uÃ~$âi%!S )
i
E d2zi

~N!

p
e2uzi

~N!u21zi
~N!

1zi*
~N!D iz~N!&^z~N!i

3S )
j 51

N

~12ĤDt !D iz~0!&5^0US )
j 51

N

)
i
E d2zi

~ j !

p D Ã~$zi
~N!% !e2SU0L , ~24!

whereDt5t/N, uf(0)&5iz(0)&, and

S5(
j 51

N

(
i

@Hi~z* ~ j !,z~ j 21!!Dt1uzi
~ j !u22zi*

~ j !zi
~ j 21!2zi

~N!1zi
~0!# ~25!

5 (
j 50

N21

(
i

DtS z̄i
~ j 11!~zi

~ j 11!2zi
~ j !!

Dt
1Hi~ z̄~ j 11!11,z~ j !! D . ~26!

Here zi*
( j )5 z̄i

( j )11 and Hi($zi*
( j 11)%,$z( j )%) is the same function ofzi*

( j 11) , zi*
( j ) as Ĥ i($âi

1%, $âi%) of âi
1 , âi . In the

continuous time limit we get

^A~ t0!&5

E )
i
Dz̄iDziA„$zi~ t0!%…e2S[ $z̄i ~ t !%,$zi ~ t !%;t0]

E )
i
Dz̄iDzie

2S[ $z̄i ~ t !%,$zi ~ t !%;t0]

~27!

with

S@$z̄i~ t !%,$zi~ t !%;t0#5(
i
E

0

t0
dtS z̄i~ t !F d

dt
2m¹2Gzi~ t !2a@11 z̄i~ t !# z̄i~ t !zi~ t !

1b@11 z̄i~ t !# z̄i~ t !zi
2~ t !1l z̄i~ t !zi~ t !2t z̄i~ t ! D , ~28!

where¹2 is the lattice Laplacian¹2zi(t)5(e@ze(t)2zi(t)#. Next, we follow Shapir@19# and linearize the action using th
Stratonovich transformation

ez̄i
2
~azi2bzi

2
!dt;E dh ie

2~1/2!h i
2
2 z̄iA2~azi2bzi

2
!h iAdt ~29!

and integrate out thez̄ variables

^A~ t0!&;E )
i
Dh iDzie

2~1/2!(
i
E

0

t0
dth i

2
~ t !A„$zi~ t0!%…)

t50

t0

d$dzi~ t !2m¹2zi~ t !dt

2azi~ t !dt1bzi
2~ t !dt1lzi~ t !dt2tdt2A2@azi~ t !2bzi

2~ t !#h i~ t !Adt%. ~30!
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In this expression, there ared functions at every time; this
means that onlyzi(t), which satisfy the Langevin equation

dzi~ t !5m¹2zi~ t !dt1~a2l!zi~ t !dt2bzi
2~ t !dt1tdt

1A2@azi~ t !2bzi
2~ t !#dWi~ t ! ~31!

@where Wi(t) is a Wiener process#, contribute to the path
integral. In other words, the variableszi(t) remain on the
trajectories described by Eq.~31!. Note that this equation
must be considered as an Ito stochastic differential equa
since we can see from the form of the action~26! that up-
dating the variableszi to time-stepj 11 only requires knowl-
edge of the variables at time-stepj. Also, we note that for
l>0 and for small enough~positive! t, if the initial condi-
tions specify 0<zi(0)<a/b, this will remain true for all
subsequent time. Thus, Eq.~31! describes the temporal evo
lution of the system as a sequence of Poissonian states@18#.

For further analysis, we rescale Eq.~31! with z5ua/b,
t→t/a, l̃5l/a, t̃5tb/a2, and m̃5m/a. If we further-
more letN5a/b be the mean-field number of particles
the presence of only the first two processes~no spontaneous
decay or spontaneous creation!, we obtain

dui5m̃¹2uidt1~12l̃ !uidt2ui
2dt1 t̃dt

1A2

N
Aui2ui

2dWi ~32!

with initial conditions 0<ui(0)<1.

III. EXACT SOLUTIONS OF SOME LOCAL LANGEVIN
EQUATIONS

In the absence of process~4!, i.e., att50, Eq.~32! has an
absorbing stateu50. In the vicinity of this point, Eq.~32!
cannot be treated by merely settingdt to a finite time step.
Such a scheme would often give rise to a negativeu, due to
the ~very-large! noise term. Onead hocway to circumvent
this difficulty was given by Dickman@20#, who proposed to
reintroduce discreteness into the state space in the vicinit
the absorbing state. Although this approach appears to w
~it seems to lead to the correct critical behavior near the b
transition of this class of models!, it seems to be a step back
ward; after all, the original process was discrete and
whole purpose of using the Langevin formalism is to prov
a ~hopefully more analytically tractable! continuum descrip-
tion. But, one must then come up with a different scheme
updating the stochastic variables.

Our approach is to solve exactly the stochastic part of
evolution equation and embed this via the split-step met
in a complete updated scheme for a finite time stepDt. We
will discuss the details of this scheme in the next secti
Here, we provide an analytic solution for several~local!
Langevin equations, as these results will be needed la
Also, this solution set is of interest on its own. There is so
limited consideration of equations of this sort in the literatu
@21#, but as far as we can determine, these explicit soluti
for the case of physical no-flux boundary conditions at
absorbing state have not previously appeared.

So, we consider Langevin equations with just the no
n,

of
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e
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term. Let us start with the simplest example,

du5A2udW. ~33!

The probability density P(u,t) satisfies the associate
Fokker-Planck equation

]P~u,t !

]t
5

]2

]u2
uP~u,t ! ~34!

with initial condition P(u,t)u t5t in
5d(u2u0). We want our

solution to be equal to zero foru,0 and have no flux leak-
ing out of this point; this will guarantee that the total pro
ability remains a constant, which we will choose to be uni

To solve this equation, we definec5uP and Laplace
transform in time to obtain

u
]2c̃

]u2
~s!2sc̃~s!5u0d~u2u0!. ~35!

Here,c̃(s) is the transform ofc. If we let y52Au, this can
be written as

S ]2

]y2
2

1

y

]

]y
2sD c̃52

y0

2
d~y2y0!. ~36!

The homogeneous part of this equation can be recognize
a variant of Bessel’s equation. This allows us to write do
a provisional solution in the form

c̃~s!5
yy0

2
K1~Asy.!I 1~Asy,!, ~37!

whereI 1 andK1 are modified Bessel functions andy.(y,)
is the larger~smaller! of y andy0 . Returning to the original
variables,

P̃~s!52
Au0

Au
K1~2Asu.!I 1~2Asu,!. ~38!

This solution does not, of course, vanish foru,0 and hence
we must modify it by multiplying byu(u). This does not
change the fact that it solves the equation away fromu50
but it does introduce a discontinuity of siz
2Au0K1(2Asu0). If we look at the original equation, we se
that this leads to ad function via ud8(u)52d(u). This
must be compensated for by adding an explicitd-function
piece to the solution. The final result is

P̃~s!52
Au0

Au
K1~2Asu.!I 1~2Asu,!

12Au0

s
K1~2Asu0!d~u!. ~39!
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We can do the inverse transform by the usual cont
integral approach. The details are particularly unillumin
ing, so we merely quote the final result

P~u,t !5
1

t
Au0

u
e2~u1u0!/tI 1S 2Auu0

t D 1e2u0 /td~u!.

~40!

One can check explicitly that this solves the equation a
also thatP remains normalized for all times. Thed-function
piece represents accumulation at the absorbing state; ast gets
large, all the probability ends up there. The regular part
P(u,t) is presented in Fig. 1. We see that as ratiou0 /t be-
comes smaller, the distribution gradually shifts towards z
and differs from the Gaussian expected at very short tim

For completeness, we write down the solution of t
Langevin equations with additional terms. If we take the s
tem

du5tdt1A2udW, ~41!

the probability density is

P~u,t !5S u0

u D ~12t!/2 I t21S 2
Auu0

t D
t

e2~u1u0!/t. ~42!

FIG. 1. The function~40! with u051 and Dt50.03(n22n
11) for n51, . . .,10.
r
-

d

f

o
.

-

For this case, spontaneous birth from the vacuum prev
the system from falling irreversibly to the stateu50. In-
stead, there is an integrable power-law singularity neau
50 which becomes ad function in thet→0 limit; this is
shown in Fig. 2.

For the system

du5audt1A2udW ~43!

the probability density is

P~u,t !5e2au0eat/~eat21)d~u!

1Ag~ t !
u0

u
I 1„2Ag~ t !uu0…e

2a~u1u0eat!/~eat21!,

~44!

whereg(t)5a2eat/(eat21)2. In this case, the drift toward
infinity gives rise to a finite total probability~for long times!
of falling into the absorbing state. One can also work out
case of both finitet and finitea.

For the system

du5A2~u2u2!dW ~45!

we can derive a series representation for the probability d
sity,

FIG. 2. The function~42! with u051 and Dt50.03(n22n
11) for n51, . . .,10.
P~u,t !5 (
m51

1`

e2m~m11!t
2m11

2m~m11!
Au0~12u0!

u~12u!
Pm

1 ~2u021!Pm
1 ~2u21!

1d~u!S 12u02 (
m51

1`

~21!m
2m11

2m~m11!
Au0~12u0!e2m~m11!tPm

1 ~2u021!D
2d~12u!S u01 (

m51

1`
2m11

2m~m11!
Au0~12u0!e2m~m11!tPm

1 ~2u021!D , ~46!
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wherePm
1 (x) is an associated Legendre polynomial. Succ

sive terms in this sum decay rapidly because of the expon
and thus the sum can be computed numerically to high
curacy. Note that there are absorbing states at bothu50 and
u51. If the initial state starts close to one of these, the pr
ability distribution is almost the same as Eq.~40!; if the
initial state is in between, then for short times the system
almost Gaussian.

IV. FRONT PROPAGATION

A. Numerical method

We are interested in numerically solving Eq.~31!, for the
particular case oft5l50; this is the case which reduces
the deterministic case to the well-studied Fisher equation@4#.
For this purpose, we define a function

Fu0 ,Dt~u!5E
02

u

P~u,Dt !du, ~47!

where P(u,Dt) is the analytical solution of a single-sit
Langevin equation such as Eq.~32!. This function has values
ranging from 0 to 1. Ify is a random variable homoge
neously distributed on@0,1#, thenu5Fu0 ,Dt

21 (y) is distributed

according to a corresponding truncated Langevin equatio
time Dt. The remaining parts of the complete Langev
equation are deterministic and for those terms we can up
u via a simple Euler scheme. We then can combine these
steps together; we first compute the change inu due to fluc-
tuations and then the change ofu due to the deterministic
part ~using a new value ofu). Thus

u~ t1Dt !5Fu~ t !,Dt
21 ~y!1D$Fu~ t !,Dt

21 ~y!%Dt, ~48!

whereD$u% denotes the terms remaining after considerat
of the noise term.

It is important to note that this scheme never allows
field to go below zero, but it does allow a variable to
stuck at zero until it is ‘‘lifted’’ by the diffusive interaction
This is an absolutely necessary aspect of simulating p
cesses with an absorbing state. Approximations which do
allow for getting ‘‘stuck,’’ such as the system-size expans
method of Van Kampen@7# ~where the noise correlation i
taken to be related to the solution of the deterministic limit
the equation!, get this wrong and hence cannot get the c
rect front velocity. This explains why the simulation resu
of @22# do not exhibit the anomalousN dependence expecte
via the Brunet-Derrida cutoff argument. As we will see, o
approach is much more successful.

B. Marginal stability criterion for a discretized Fisher
equation

As N gets large, our results should approach those of
deterministic system. Since this problem corresponds
propagation into an unstable region, the velocity should
given by the marginal stability approach. As is well know
this predicts a velocity equal to 2AD, in the continuum~in
time and space! limit. Here, we extend this result to a dis
-
nt,
c-

-

is
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e
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f
-
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e
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e
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crete lattice and a finite time update scheme, so as to be
to directly compare our simulation data with the theoreti
expectation.

After linearization, the deterministic part of the dis
cretized equation takes the form

ui
~ j 11!2ui

~ j !

Dt
5m~ui 11

~ j ! 22ui
~ j !1ui 21

~ j ! !1ui
~ j ! . ~49!

We want to compare this equation to the usual Fisher eq
tion with diffusion coefficient D. This means thatm
5D/h2; we will consider the caseD51. We assume that the
front moves with constant velocityc and therefore the vari-
ablesui

( j ) show a stroboscopic picture of this motion at tim
j Dt on the lattice sitesi. If we move with the speed of the
front, we will see that its shape exponentially decays
eq( ih2c jDt). Substitution of this expression into Eq.~49!
gives the dependence ofc on the decay rateq,

e2qcDt21

Dt
5

2

h2
~coshqh21!11. ~50!

The standard marginal stability argument predicts that
can determine the decay rate and asymptotic speed of
front ~for a sufficiently localized initial state! by solving Eq.
~50! as well as its derivative with respect toq,

ce2qcDt52
2

h
sinhqh. ~51!

Simulations directly confirm this formula as well as the Br
net and Derrida@11# result~actually derived earlier by Bram
son @23#! that c`2c(t);1/t ~see Fig. 3!.

As already mentioned, it has been conjectured that
leading effect of the fluctuations is the imposition of an e
fective cutoff of order 1/N in the deterministic equation. To
check this, we need to extend the Brunet and Derrida re
to our discretized equation. The basic idea is that there m
be a small imaginary part of the decay rate so as to sat
the continuity conditions at the cutoff point; this is discuss
in detail in @11#. This leads directly to

Imq5
pq0

ln~AN!
, ~52!

whereq0 is a solution from the marginal stability criterio
andA is some constant. Sincec8(q) is zero at the margina
stability point, we can find the change in velocitydc by
considering the second derivative of the functionc(q) given
by Eq. ~50!. We thus get

dc5

p2q0S ec0q0Dtcoshq0h2
c0

2Dt

2 D
ln2N

. ~53!

Again, simulations confirm this formula~see Fig. 4!.

C. Results

We now present the results of our simulation. We cho
to make one further simplification. We use the pure squ
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root noise term instead of the precisely correct term given
Eq. ~32!. We do this for computational ease, inasmuch as
expression derived for this case is much simpler than tha
Eq. ~46!. Since it is only the effect of the noise near theu
50 absorbing state which is crucial for altering the selec
velocity, this simplification should not be essential. Once
have done this, the resulting equation has the nice fea
that the coefficient 1/AN in front of the noise term can b
removed by the rescalingû5uN. This means that we ca
simulate Eq.~32! using a fixed probability table~with the
same time step! for any N.

FIG. 3. Front propagation for the discretized Fisher equati
Parameters wereDt50.01, h51; for this choice, Eq.~49! gives
c`52.054 115 884. The speed is determined by registering e
time some lattice point comes within some small interval arou
0.5 and then merely using the ratio of the number per spaces m
over the time elapsed; this method leads to some scatter, as se
the graph. Aside from showing agreement with the calculatedc` ,
the graph also shows how the system approaches the eventut
asymptotic behavior.

FIG. 4. Dependence of the front speed on the deterministic
off. The curves represent simulation results calculated with the
rametersh51 and Dt50.01;0.015;0.02 from top to bottom, re
spectively. The cutoff was implemented via setting the field to z
at any time and place where it was below 1/N. The triangles on the
y axis represent the theoretical values whenN→` as given by Eq.
~53!.
n
e
of

d
e
re

To actually evaluate the probability tableFu0 ,Dt(u), we

chose 512 equidistant values ofû0 in the interval from 0 to
30. For each û0 , the interval of values forû where
Fû0 ,Dt50.01(û) is nontrivial was divided into 1024 equidis

tant points. The new value ofû was then determined by
linear interpolation of the data from the table. Forû0.30,
new values ofû were determined using a standard algorith
for the Gaussian distribution, since this distribution is t
asymptotic limit of Eq.~40!, whenû0@Dt, û@Dt. The dif-
ference for this distribution and exact solution is small f
û0.30. Finally, the computation of the stochastic term w
turned off for û0.1023N. This should not affect the spee
which, we have already argued, is only sensitive to w
happens nearu50; this insensitivity was also checked d
rectly by running some simulations in which the stochas
term is included for all values ofu.

All of our simulations were run up to timet5106. Four
values of the velocity, corresponding to time intervals
approximately 23105, were obtained so as to get an avera
and an error bar. In Fig. 5 we show data in the form ofc
2c` , wherec` is calculated from Eq.~51!, versus ln2N. Also
plotted for comparison is the function 11/ln2N. Note that
over many orders of magnitude ofN, the dependence derive
by Brunet and Derrida provides a very good fit to the da

To get a more accurate indication of the data for largeN,
we present in Fig. 6 a series of three runs, for differing va
ues of the spatial lattice spacingh. Under the hypothesis tha
the stochastic system should be precisely the same as
deterministic system with the cutoff added, the expected l
iting values at infiniteN are shown as triangles on the axis.
is clearly impossible to definitively conclude that the curv
are approaching these values. On the other hand, simple
trapolations come very close and we believe that it is m
likely than not that this hypothesis is true. This is opposite
what was conjectured based on simulations of a disc
Markov process, where the velocity seems to scale, al
with a different coefficient. Given the incredibly slow con
vergence of this velocity at largeN, we are pessimistic as to
whether any purely simulational strategy would provide
definitive answer to this question. This therefore offers
crucial issue for future theoretical analysis to investigate.
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FIG. 5. Front speed for the Langevin equation with parame
Dt50.01 andh51.
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V. SUMMARY

In this work, we have shown how to use the fiel
theoretic mapping of discrete Markov processes to stocha
equations for a continuous density variable to address
role of finite-particle number fluctuations on the velocity
reaction fronts. Specifically, we studied a model which lea
to the well-known Fisher equation in theN→` limit, where
N is the average number of particles per site in the sta
state. Our goal is to understand how the usual marginal
bility criterion becomes modified by these stochastic effe

It is clear that having finiteN lowers the velocity at which

FIG. 6. Front speed for the Langevin equation with parame
Dt50.01 andh51, h51/2, h51/3 correspondingly from top to
bottom. Triangles on they axis are the corresponding asympto
values for the deterministic cutoff.
w
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a front~corresponding to the invasion of the unstable state
the stable one! will propagate. One attractive hypothesis
that the leading effect of the fluctuations is to introduce
effective cutoff into the deterministic equation; this ide
arose independently in a model of biological evolution@9#
and in mean-field approaches for diffusion-limited aggre
tion ~DLA ! @8#. Brunet and Derrida have shown that if this
the case, one should expectvMS2v5C/ ln2N, where C
5p2 for the case of continuous time and space. We h
extended the calculation ofC to the finite lattice size, finite
time-step system and compared this prediction with dir
simulations of the relevant stochastic equation. Our res
verify the form of the scaling and suggest that the coeffici
may be correct as well.

One issue that is left unaddressed by our work to d
concerns the effects of higher spatial dimensionality. It
likely, although unproven, that the velocity change will b
smaller, as the fluctuations get averaged over the transv
directions. This seems to be the explanation for the findi
of Riordan et al. @24# that the reaction front looks mean
field-like even for smallN, in three and four dimensions. W
hope to report on this issue in the future.

Finally, we point out yet again that there is no analy
treatment available for the velocity selection problem in t
stochastic equation. Obvious expansion methods such a
system-size approach cannot work, as they neglect the es
tial role of the fluctuations to push the system back into
absorbing state at small density. We need to find a m
powerful approach.
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